Ultra-low-loss Ta2O5-core/SiO2-clad planar waveguides on Si substrates

نویسندگان

  • MICHAEL BELT
  • MICHAEL L. DAVENPORT
  • JOHN E. BOWERS
  • DANIEL J. BLUMENTHAL
چکیده

An increasing number of systems and applications depend on photonics for transmission and signal processing. This includes data centers, communications systems, environmental sensing, radar, lidar, and microwave signal generation. Such systems increasingly rely on monolithic integration of traditionally bulk optical components onto the chip scale to significantly reduce power and cost while simultaneously maintaining the requisite performance specifications at high production volumes. A critical aspect to meeting these challenges is the loss of the waveguide on the integrated optic platform, along with the capability of designing a wide range of passive and active optical elements while providing compatibility with low-cost, highly manufacturable processes, such as those found in CMOS. In this article, we report the demonstration of a record low propagation loss of 3 1 dB∕m across the entire telecommunications C-band for a CMOS-compatible Ta2O5-core∕SiO2-clad planar waveguide. The waveguide design, fabrication process, and optical frequency domain reflectometry characterization of the waveguide propagation loss and group index are described in detail. The losses and dispersion properties of this platform enable the integration of a wide variety of linear and nonlinear optical components on-chip, as well as integration with active rare-earth components for lasers and amplifiers and additionally silicon photonic integrated devices. This opens up new integration possibilities within the data communications, microwave photonics, high bandwidth electrical RF systems, sensing, and optical signal processing applications and research communities. © 2017 Optical Society of America

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Low Loss Ultra-High Δ ZrO2-SiO2 PLC for Next Generation Compact and High-Density Integrated Devices

For next generation planar lightwave circuit (PLC) devices, high function and high-density integration are required as well as downsizing and cost reduction. To realize these needs, high refractive index difference between a core and a clad (∆) is required. To use PLC for practical applications, silica-based PLC is one of the most attractive candidate. However, degradation of the optical proper...

متن کامل

Low-loss high-index-contrast planar waveguides with graded-index cladding layers.

We experimentally demonstrate, for the first time, propagation loss reduction via graded-index (GRIN) cladding layers in high-index-contrast (HIC) glass waveguides. We show that scattering loss arising from sidewall roughness can be significantly reduced without compromising the high-index-contrast condition, by inserting thin GRIN cladding layers with refractive indices intermediate between th...

متن کامل

Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability.

We investigate the nonlinearity of ultra-low loss Si3N4-core and SiO2-cladding rectangular waveguides. The nonlinearity is modeled using Maxwell's wave equation with a small amount of refractive index perturbation. Effective n2 is used to describe the third-order nonlinearity, which is linearly proportional to the optical intensity. The effective n2 measured using continuous-wave self-phase mod...

متن کامل

Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter) have been prepared by controlling selective growth conditions of lowpressure chemical vapor deposition (LPCVD) on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth ...

متن کامل

Silicon nitride based plasmonic components for CMOS back-end-of-line integration.

Silicon nitride waveguides provide low propagation loss but weak mode confinement due to the relatively small refractive index contrast between the Si₃N₄ core and the SiO2 cladding. On the other hand, metal-insulator-metal (MIM) plasmonic waveguides offer strong mode confinement but large propagation loss. In this work, MIM-like plasmonic waveguides and passive devices based on horizontal Cu-Si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017